Azhie A, Sharma D, Sheth P, et al. A deep learning framework for personalised dynamic diagnosis of graft fibrosis after liver transplantation: a retrospective, single Canadian centre, longitudinal study [published online ahead of print, 2023 May 18].
Lancet Digit Health. 2023;S2589-7500(23)00068-7.
doi:10.1016/S2589-7500(23)00068-7
Bhat M, Rabindranath M, Chara BS, Simonetto DA. Artificial intelligence, machine learning,and deep learning in liver transplantation.
J Hepatol. 2023;78(6):1216-1233.
doi:10.1016/j.jhep.2023.01.006
Baciu C, Xu C, Alim M, Prayitno K, Bhat M. Artificial intelligence applied to omics data in liver diseases: Enhancing clinical predictions.
Front Artif Intell. 2022;5:1050439. Published 2022 Nov 15.
doi:10.3389/frai.2022.1050439
Gotlieb N, Azhie A, Sharma D, et al. The promise of machine learning applications in solid organ transplantation.
NPJ Digit Med. 2022;5(1):89. Published 2022 Jul 11.
doi:10.1038/s41746-022-00637-2
Tran J, Sharma D, Gotlieb N, Xu W, Bhat M. Application of machine learning in liver transplantation: a review.
Hepatol Int. 2022;16(3):495-508.
doi:10.1007/s12072-021-10291-7
Bhat M, Rabindranath M. The promise of artificial intelligence for predictive biomarkers in hepatology.
Hepatol Int. 2022;16(3):523-525.
doi:10.1007/s12072-022-10342-7
Cooper M, Krishnan RG, Bhat M. Deep learning and the future of the Model for End-Stage Liver Disease-sodium score.
Liver Transpl. 2022;28(7):1128-1130.
doi:10.1002/lt.26485
Sarvestany SS, Kwong JC, Azhie A, et al. Development and validation of an ensemble machine learning framework for detection of all-cause advanced hepatic fibrosis: a retrospective cohort study.
Lancet Digit Health. 2022;4(3):e188-e199.
doi:10.1016/S2589-7500(21)00270-3
Sharma D, Gotlieb N, Farkouh ME, Patel K, Xu W, Bhat M. Machine Learning Approach to Classify Cardiovascular Disease in Patients With Nonalcoholic Fatty Liver Disease in the UK Biobank Cohort.
J Am Heart Assoc. 2022;11(1):e022576.
doi:10.1161/JAHA.121.022576
Nitski O, Azhie A, Qazi-Arisar FA, et al. Long-term mortality risk stratification of liver transplant recipients: real-time application of deep learning algorithms on longitudinal data.
Lancet Digit Health. 2021;3(5):e295-e305.
doi:10.1016/S2589-7500(21)00040-6
Yasodhara A, Dong V, Azhie A, Goldenberg A, Bhat M. Identifying Modifiable Predictors of Long-Term Survival in Liver Transplant Recipients With Diabetes Mellitus Using Machine Learning.
Liver Transpl. 2021;27(4):536-547.
doi:10.1002/lt.25930
Spann A, Yasodhara A, Kang J, et al. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review.
Hepatology. 2020;71(3):1093-1105.
doi:10.1002/hep.31103
Bhat V, Tazari M, Watt KD, Bhat M. New-Onset Diabetes and Preexisting Diabetes Are Associated With Comparable Reduction in Long-Term Survival After Liver Transplant: A Machine Learning Approach.
Mayo Clin Proc. 2018;93(12):1794-1802.
doi:10.1016/j.mayocp.2018.06.020
Ivanics T, Patel MS, Erdman L, Sapisochin G. Artificial intelligence in transplantation (machine-learning classifiers and transplant oncology).
Curr Opin Organ Transplant. 2020;25(4):426-434.
doi:10.1097/MOT.0000000000000773
Ivanics T, Nelson W, Patel MS, et al. The Toronto Postliver Transplantation Hepatocellular Carcinoma Recurrence Calculator: A Machine Learning Approach.
Liver Transpl. 2022;28(4):593-602.
doi:10.1002/lt.26332
Ivanics T, So D, Claasen MPAW, et al. Machine learning-based mortality prediction models using national liver transplantation registries are feasible but have limited utility across countries.
Am J Transplant. 2023;23(1):64-71.
doi:10.1016/j.ajt.2022.12.002